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1. INTRODUCTION

The purpose of this paper is to use a linearization technique plus well
established linear control theory to derive relevant information concerning
the extremal functions in a minimum-maximum problem. The problem in
question is to minimize the expression

ess sup F(t, x(t), x(t),..., x(n)(t»
a<t<b

over the class of functions x which are "smooth" enough and satisfy suitable
boundary conditions at a and b. Here, F is a given function in C· of n + 2
variables. This is called an inf-sup or a minimum-maximum problem. One
main result will be proved. It says, roughly, that if X o is a minimizing
function satisfying a certain "nondegeneracy" condition, then F(t, xo(t),
xo(t),..., x~n)(t» is constant on (a, b). Also some further information is
obtained, and it turns out that, for wide classes of functions F, the analysis is
easily carried further to'give more information; for instance on the "spline
properties" of X o' Examples of this are given in the last section.

This problem was treated by the present author in [2], using methods from
nonlinear optimal control theory. The theorem proved here includes the main
result in [2] as a corollary, as shown in Section 4. We are not aiming at a
complete discussion of the extremum problem. A sketch of the background
for these problems, including the spline concept, is given in [2]. This
includes interesting theorems by Glaeser [3] for the case F=. (x(n)(t»2 and
by McClure [6] for the case F=. (x(n)(t) + LZ:J ak(t)x(kl(tW. The case
n = 1 has been studied from various aspects by the author; references are
given in [2].
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2. TECHNICAL PRELIMINARIES; NOTATIONS

91

We will study an extremum problem on a basic interval a ~ t ~ b, and will
first define the class of admissible functions. Consider the Sobolev space

wn,oo = Wn,oo [a, b]

= {IE R[a, b] If(V) is absolutely continuous for

v = 0, 1,..., n - 1 and Ilfnl IIUD < OCJ }.

If X~V), X~V) for v = 1,2,..., n are given real values, we consider

U = {IE Wn,oo IfV)(a) = X~V+ I), fV)(b) = X~['+ I)

for v = 0, 1,... , n - 1}.

Then U will be the class of admissible functions. Further, let
F = F(t, Yo' y"... ,Yn) be a given function in C1([a, b] X R n+1). Then, for any
x E wn

, 00 [a, b] the quantity

H(x) = ess sup F(t, x(t), x(t), ... , x(n)(t))
a<l<b

is well defined. The problem is now to minimize the functional Hover U.
Naturally, other boundary conditions might also be of interest, but will not
be used in this paper.

Let x be an arbitrary element in Wn.oo [a, b]. Write M = H(x) and
consider the set

E. = {t Ia < t < b, F(t, x(t), x(t),..., x(n)(t)) ~ M - t:}.

Further, let D k +2 F denote the partial derivative of F with respect to variable
number k + 2. We then,have

LEMMA 1. Suppose that there is an t: >°and ayE Wn,oo [a, b] so that

n

ess inf L Dk+2F(t, x(t), x(t), ... ) y(k)(t) >0.
lEE, k=O

Then H(x - AY) <H(x) for all suffiCiently small A >0.

Proof Clearly,

F(t, x(t) - )"y(t),... )

n

= F(t, x(t), ... ) -)". L Dk+2F(t, x(t),... ) y<k)(t) +R(t, ),,),
k=O

040/38/17

(1)
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where R(t,~) = o(~), uniformly in t. Thus, for t E E.\(a null set)

F(t, x(t) - ~y(t),... ) ~ M - O· ~ +R(t, ~),

where 0 =ess inf Lk ... > O. Further, IR(t, ~)I ~ (O/2)~ for 0 <A<AI and
then F(t, x - Ay,... ) ~ M - (O/2)A. For tEE. we have

lim F(t, x - Ay,... ) = F(t, x,... ) <M - e
A-O

with uniform convergence.
The lemma follows easily from this.

LEMMA 2. Assume that the vector funtion tT(t) = (tTl(t), ..., tTn(t)) *0
satisfies a linear system of the form

~I = "'I(t) tTn ,

~2 = -tTl + "'2(t) tT n ,

~3 = -tT2 + "'3(t) tT n ,

a.e. on an interval (a, b). Thefunctions "'k are in L 00(a, b). Then tTn can have
at most a finite number of zeros on (a, b). (It is understood that tT is
absolutely continuous.)

Proof. Consider tT(t) as a column vector and write the system as

where

[

0 0 0 0 0]
1 0 0 0 0

A o = ~ 1 0 0 ~ .

o 0 0 1 0

Assume that tTn has an infinity of zeros on [a, b]. After reversing the (-axis
we may write
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where ({J(t) E L 00 is an (n XI) vector function. We can assume that the zeros
of'tln cluster at t = O. We have

Now the matrix Ao is nilpotent and eAol is easily computed. In fact, we
have (see [4, p. 99])

0 0
t 1 0

eAol = tZj2 1

tn- 1 tn- Z t n- 3 (z

(n - I)! (n - 2)! (n - 3)! 2
t 1

By taking the nth component in the above equation for 'tl(t) we find

(2)

where the polynomial pet) i= 0, since 'tl(0) *" O. Let cktk be the lowest order
term in pet). Thus l'tln(t)! ~ CkItl k + dk If~1 'tln(S) Idsl for some constants
ck>0 and dk • From the generalized Gronwall inequality ([4, p 36]) we infer
that 'tln(t) = O(tk). But then the integral in (2) is O(tk+I). Hence it follows
from (2) and our choice of k that the zeros of'tln cannot cluster at t = O.

The contradiction completes the proof.

3. THE MAIN RESULT

Because of the boundary conditions, the function y in Lemma 1 should
satisfy ylkl(a) = ylkl(b) = 0 for k = 0, 1,..., n - 1, in order to be useful. Put
Fk(t) =Dk+zF(t, x(t),..., x(nl(t». Clearly, Fk E L 00 for any x E Wn,oo. We
thus have a differential equation

n

L Fk(t) ylkl(t) = w(t),
k=O

where it is crucial that w(t) ~ 0 > 0 for tEE., for some positive e and O. It
is natural and expected that the leading coefficient Fn is important in the
further analysis. The main result is
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THEOREM. Suppose that H takes on its minimum over the class U at XO'

Suppose that there exist e and Ii, both positive, such that

a.e. on E e•

Then F(t, xo(t), xo(t),..., Xbn1(t» = M a.e. on (a, b). Further, the interval (a, b)
can be divided into a finite number of subintervals {Jk}~ such that, for each
J k, either Fit) ~ Ii a.e. on J k or else Fn(t):::;;; -Ii a.e. on Jk.

Proof. As an attempt, put L~=oFk(t)ylkl(t)=U(t) on E e and
ylnl(t) = w(t) on [a, b l\Ee, except for null sets. Now y is to be constructed
by appropriate choice of u and w. First, write

on E e•

We introduce functions {Gk(t)}~:L b(t), and d(t) in L oo by putting

Gk(t) = -Fk(t)/Fn(t), for tEEe,

=0, for tEEe ;

1
d(t) = 0, tEEe,b(t) = Fn(t)' tE E e,

and
=0, tEEe ; = 1, t EEe•

Then the attempt is summarized by writing

n-l
y(nl(t) = L Gk(t) y(kl(t) + b(t)u + d(t)w.

k=O

Transform this equation into a first-order system by writing x I = y, X 2 = y,...,
X n= yin - I). The system is then

n

x n = L: Gk_ 1(t) x k +b(t)u +d(t)w.
k~1
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Introduce matrix functions in L oc

0 I 0 0 0

0 0 I 0 0

A(t) =
0 0 0 I 0

0 0 0 0 I

Go G, G2 GJ Gn - let)

B(I) ~ [ !l and D(I)~ [!]
bet) d(t)

In matrix form, the system is written as

x= A(t)x + B(t)u + D(t)w.

95

(*)

It is convenient to consider this as a linear control system in R n
, the control

variables being u and w. It fits perfectly into the machinery of 15, Chap. 2,
p.68].

It is required to steer the system from x(a) = 0 to x(b) = 0 by using
control functions u and w so that ess inf u(t) > O. The solution of (*) for
t = b is

b

x(b) = 4>(b) f 4>(S)-1 IB(s) u(s) + D(s) w(s)j ds,
a

where 4>(s) is a fundamental matrix for x= A(t)x. It is assumed here that
x(a) = O. Since 4>(b) is nonsingular, it is required to find u and w so that
f~ 4>(s) - I IBu + Dw J ds = 0 and ess inf u(t) > O.

Let us try u(t) == 1. If the equation

r4>(s) - I D(s) w(s) ds = - r4>(s) - , B(s) ds = X
a a

has a solution wE L 00, then this will contradict the optimality of the
function X o in the theorem. Assume now that Ia, bI\EE is a set of positive
measure. We claim that the equation

b

Lo(w) =f 4>(S)-1 D(s) w(s) ds = X
a
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has a solution. If this is not true, then the image of L 00 under the mapping
L o is a proper subspace of R n, and then there is a normal N =1= 0 such that

bJNtP(S)-1 D(s) w(s) ds = 0
a

for all wE L 00.

Put NtP(S)-1 = l7(s) = (171(s),..., I7n(s». From the definition of D(t) it follows
that

f. I7n(s) w(s)ds = 0
[a,bJ\Ee

for all wE L oo•

Consequently, l7n<s) = 0 a.e. on [a, b]\Ee• i.e., on a set of positive measure.
But it is well known that l7(s) = NtP(s) -I =1= 0 satisfies the adjoint system
~ = -I7A(t).

From the form of the matrix A(t) it is clear that Lemma 2 is applicable
and, consequently, I7n can only have a finite number of zeros. But this gives a
contradiction and therefore the assumption that [a, b]\Ee has positive
measure is wrong. Thus, E e has full measure. .

Clearly, this must be true for all sufficiently small e > O. It follows that
F(t, xo(t),..., x~n)(t» = M a.e. on (a, b).

Now the variable w has finished its role and it remains to study the
equation L(u) = f~ tP(S)-1 B(s) u(s) ds = 0 under the conditions u E L 00 and
ess inf u >O. Let U+ denote the class of all such control functions. Since Xo
is optimal, it follows from the analysis that 0 eL(U+-). Consider the set
L(U+). Clearly, it is a convex cone in R n (in the terminology of [7, p. 13]).

Since 0 eL(U+), it follows (see [7, p. lOl]) that there is a vector N =1= 0
in R n such that N· L(u) ~ 0 for all u E U+. Thus,
f~ NtP(S)-1 B(s) u(s) ds ~ 0 for all u E U+. Again, write NtP(S)-1 = l7(s) =
(171(S),...,l7n(s». As above, we know that 17 satisfies ~ = -I7A(t), and, again
by Lemma 2, we know that I7n has only a finite number of zeros.

From the definition of B(s) it follows that

J
b I7n(s)
a Fn(s) u(s) ds ~ 0 for all u E U+.

Obviously, I7n(s)/Fn(s) ~ 0 a.e. on [a, b]. Thus, sign Fn(s) = sign I7n(s) a.e.,
and the theorem follows.

Remark. The concept of an absolutely minimizing function was
introduced in [1, p. 45]. The idea is that the function in question must solve
the extremum problem, not only on the given interval, but also on each
subinterval, the boundary data then being given by the function itself. Note
that in the classical calculus of variations every minimizing function is
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absolutely minimizing, whereas this is no longer true for extremum problems
of the present type.

COROLLARY. The function Xo in the above theorem is absolutely
minimizing.

Proof. If this is not true, then there is a subinterval Ia, P] cIa, b] and a
function Xl E Wn.oola,p] such that x~k)(a)=x~k)(a) and X~k)(P)=X~k)(P) for
k = 0, 1,... , n - 1, and such that

ess sup F(t, x,(t),..., x~n)(t)) <M.
a<t<13

Assume for instance that a <a <p<b. Consider as in the proof of the
theorem the control system oX = A (t)x +B(t)u, now over the two intervals
la, a] and [P, b]. Use the control u(t) == 1 and zero data at t = a to obtain a
function y(t) on la, a]. Similarly, use u(t) == 1 and zero data at t = b to
obtain z(t) on [p, b]. Let A>0 be a parameter at our disposal.

Consider Y"t(t) = xo(t) - Ay(t) on la, aI and Z"t(t) = xo(t) - AZ(t) on
IP, bl· From Lemma 1 we know that H(Y"t) <M and H(ZJ <M, for A
small enough. Choose a function w E wn ,00 Ia, P] such that W(k) (a) = ylk) (a)
and W(k)(P) = Z(k)(P) for k = 0, 1,..., n - 1. Form the function
X E W~·oola, b] defined by

X(t) =y(t),

= w(t),

= z(t),

Also, define x2 E Wn,oola, b] by

x 2(t) = xo(t),

= x,(t),

= xo(t),

for a ~ t ~ a,

for a~ t~P,

for P~ t~ b.

for a ~ t ~ a,

for a ~ t ~P,

for P~ t~ a.

It is obvious that H(x2 - AX) <H(xo) = M if A >0 is small enough. This
contradicts the optimality of Xo and completes the proof.

Further remarks, A function X can be absolutely minimizing without
satisfying the conditions of the theorem. An example of this is given in 11,
p. 53]. The same example shows that the assumption IFn(t)1 ~jJ on E.cannot
be omitted, See also [2, p. 146].



98 GUNNAR ARONSSON

4. SOME PARTICULAR CASES OF INTEREST

We shall discuss some applications of the above theorem.

A. Comparison with [2]

Let us make an assumption concerning the function F=F(t,Yo,Yp...,Yn)
which was made in [2, p. 145], namely, there is a function
wE q[a, b] X Rn

) so that

of/oYnis> 0, if Yn > w(t,Yo,Yp···,Yn_I)'

=0, if Yn= w( .. · ),

<0, if Yn <w( .. · ).

Introduce the "minimum function" m(t,Yo'YP''''Yn_I)=F(t,yo'Yp... ,
Yn-P w(t,Yo,Yp...,Yn_I))' Let X oE Wn,oo be a minimizing function such
that

holds for a <. t <. b. This is condition (*) in [2, p.145]. By uniform
continuity there exist e and ~I' both positive and independent of t E [a, b]
such that F(t, xo(t),..., Xbn-I)(t), Z) <M - e if IZ - wet, xo(t),...,
Xbn-ll(t))1 <. ~I' Further, by continuity and the condition on of/oyn' there
exists a ~2 > 0, not depending on t such that

I
of (n-I») I 1:oYn (t, xo(t), ..., X o (t , Z) > U2

if

and

But this obviously implies that

on the set E e• Consequently, our present theorem is applicable.
Thus F(t, xo(t),..., Xbnl(t)) = M a.e. and (a, b) can be divided into open
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subintervals {Jd~ so that (oFjoYn)(t, xo(t),..., x~n)(t)) has fixed sign on each
Jk (possibly apart from a null set).

Consider an interval Jk where, let us say, (oFjoyn)( .. · ) >O. Thus x~n)(t) >
w(t, xo(t), ..., x~n-l)(t)) a.e. on Jk • But clearly the equation

F(t, xo(t), ..., x~n-l)(t), Z) = M

has a unique solution Z > w(t,... ) for every t E Jk • Furthermore, this solution
can be represented as Z = 'I/(t, xo(t), ..., x~n-l)(t)), where '1/ E C 1

•

Thus x~nl(t) = 'I/(t, xo(t),... , x~n-I)(t)) on all of Jk • It follows immediately
that X o E Cn+1(Jk ). Finally, it is clear that x~n)(t) has a jump discontinuity at
every point where oFjoYn changes sign, i.e., at a finite number of points.

We thus obtain the theorem in [2) as a corollary of the present theorem.

B. Comparison with Glaeser's Case

Let F(t, x(t), ..., x<n)(t)) == 'I/(t)(x<nl(t))2, where 'I/(t) >0 and '1/ E C 1 [a, b].
Let X o be a minimizing function (which always exists here) and put
M = H(xo)' If M = 0, then obviously X o is a polynomial of degree ~n - 1
and the solution is unique.

Let M> O. Now Fn(t) = 2'1/(t) x~n)(t) and the present theorem is obviously
applicable. Thus x~n)(t) = ±VMj'l/(t), with a finite number of sign changes.
How many intervals Jk can there be? Clearly the system satisfied by 17(t) =
(171(t), ..., 17n(t)) -:/= 0 in the end of the proof is simply

~l =0,

~2=-171'

~3 = -172'

~n = -17n-I'

and thus 17n has at most (n - 1) zeros. Thus the number of intervals Jk is at
most n.

This should be compared with two theorems by Glaeser [3), also stated in
[2, pp. 142-143). We see that some of Glaeser's statements easily carryover
to the more general case.

C. Comparison with McClure's Case

Consider the case
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where each ak E Ck[a, b]. The existence of a minimizing function Xo is clear.
Put M = H(xo)' If M = 0, then Xo satisfies

n-l
x~n)(t) + L ak(t) Xlk)(t) = 0,

k=O

together with all given boundary data.
Let M > O. Obviously the condition "I Fn(t)1 ~ fJ. on E;' is satisfied and so

our theorem can be applied. Thus,

n-I

x~n)(t) = - L ak(t) X~k)(t) ± VM,
k=O

with a finite number of switches. Hence Xo is a "perfect A -spline" with

n-I

A =Dn+ L ak(t)Dk
k=O

(see [2, p. 143 D. The switches coincide with sign changes of some nontrivial
solution tP of the adjoint equation A *tP = O.

This gives McClure's Theorem C again [2, p. 143], except for the
uniqueness of xO'
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